INTRODUCTION

There is increasing evidence that severe mental illnesses (SMI) such as Schizophrenia, Bipolar Disorder, Major Depression, are associated with higher risk of developing coronary heart disease (CHD), and shortened life expectancy [1].

Several psychotropic medications have significant cardiovascular side-effects. Many patients are on combination of medications, for psychiatric and physical health disorders. It is therefore essential that the psychiatrists possess skills in obtaining detailed medical (including cardiac) history, family history of cardiac disease, reading and interpreting ECG, being aware of potential drug interactions, and monitoring for side-effects, so that timely and clinically defensible decisions are taken to address emerging issues.

Psychotropic Medications and Cardiac Side-Effects

Conduction defects, rhythm abnormalities and sudden cardiac death: Arrhythmias can occur with Tricyclic antidepressants (TCA), antipsychotics, anticholinergics, rarely Lithium; or in states of toxicity. TCA's have type la (quinidine-like) properties, and they slow cardiac conduction (increased duration of QRS on the ECG) [2]. While this is unlikely to cause clinically significant issues in healthy individuals with normal hearts, in persons with pre-existing conduction problems (e.g., second degree heart block, bundle branch block, bradycardia and sick sinus syndrome) or who are on anti-arrhythmic agents, TCA's should be avoided. TCA's also cause sinus tachycardia because of vagolytic and anticholinergic action [3]. In healthy individuals without underlying cardiac disease, these do not cause significant issues.

TCA's are associated with reduced heart rate variability (HRV), which is a risk factor for arrhythmias [3]. This is relevant because evidence is emerging that SMI's are associated with reduced HRV [4].

All TCA's with exception of Clomipramine can prolong ventricular repolarization, manifested in the ECG as prolonged QTc interval, which increases the risk of the patients developing torsades de points [5-7]. The impact and risks are negligible in healthy individuals with no cardiac history, in therapeutic doses [8]. Older age, female sex, electrolyte imbalance (hypokalaemia and hypomagnesemia), thyroid abnormalities are other risk factors [9].

Selective Serotonin Reuptake Inhibitors (SSRI's), at therapeutic doses, are unlikely cause serious cardiac adverse events. Sertraline is often recommended as a first line antidepressant for patients...
Orthostatic hypotension

Blood pressure changes: Orthostatic hypotension (>20mmHg drop in systolic and >10mmHg drop in diastolic blood pressure) is one of the commonest side-effects of typical antipsychotics (more with low potency drugs (e.g. Chlorpromazine, Thioridazine) than medium-to-high potency drugs (e.g. Haloperidol and Trifluoperazine)) [28]. All the SGA's are also associated with orthostatic hypotension and neurocardiogenic syncope, though the incidence is higher with Clozapine, early in treatment.

Orthostatic hypotension is a frequent side-effect of MAOI [17] and TCAs (more common with tertiary antidepressants such as Imipramine and Amitriptyline, than secondary antidepressants such as Nortriptyline). In healthy individuals, this has little impact, but the hypotension can be dramatic in those with impaired left ventricular function [29]. α-1 adrenergic and cholinergic receptor blockade is the postulated mechanism of orthostatic hypotension. Orthostatic hypotension is also reported with SSRI's [30], Mirtazapine [31] and Trazodone [32], though it is rarely problematic in clinical setting.

Venlafaxine is associated with sustained dose-dependent increase in diastolic BP (>300mg / day), the risk being higher with immediate release (IR) preparation (3-13%) than sustained release (XR) preparation (0.5-3%) or Desvenlafaxine (0.7-1.3%) [33]. A hypertensive crisis is a known complication of MAOI treatment when tyramine-containing food is ingested [34]. Hypertension is seen in up to 4% of patients treated with Clozapine and is common in the initial four weeks of titration [35].

Myocarditis and cardiomyopathy: Myocarditis is a known adverse effect (up to 3% incidence) of Clozapine, the majority of reported cases occurring in the first 4-8 weeks of treatment [36]. Clozapine-induced myocarditis (CIM) can present with mild symptoms, but, if missed, can progress rapidly to fulminant symptoms, heart failure and death [37]. Increasing age, concomitant administration of Sodium Valproate and increased rate of dose-titration are significant risk-factors for CIM [38]. Given the clinical difficulties in detecting mild CIM, it is suggested that all patients have baseline troponin and CRP, in addition to resting pulse and BP, and ECG [39]. If there is history or treatment of congestive cardiac failure, baseline brain natriuretic peptide (BNP) or N-Terminal pro-B-type natriuretic peptide (NTproBNP) should be measured. Weekly CRP and troponin should be done in the first month of titration and levels repeated once after stable dose of Clozapine is reached. The dose increase should not be rapid. An increase in troponin above upper limits or an increase in CRP should trigger consideration of CIM. Literature suggests that troponin levels greater than 2x the upper normal limit are indicative of acute myocarditis [40]. CRP is raised on average 3 days before any increase in troponin levels is detected [40].

Quetiapine, Risperidone and Olanzapine have also been rarely associated with myocarditis [41-43]. Toxic doses (overdose of very high dose) of the MAOI Phenelzine are associated with myocarditis [44]. Cardiomyopathy is significantly more associated with Clozapine treatment than other antipsychotic medication [45]. Unlike myocarditis, cardiomyopathy is usually a longer-term complication of Clozapine treatment (range: 2-36 months) [46].

Metabolic syndrome: Metabolic adverse effects comprising altered glucose metabolism, dyslipidaemia and weight gain are commonly associated with most SGA's, the risk being highest with Clozapine and Olanzapine [46]. The risk is considerably lower with Aripiprazole, Cariprazine [46] and Lurasidone [47]. Collectively, metabolic side-effects are associated with higher risk of developing type 2 diabetes mellitus and death from coronary heart disease (CHD) [47,48].
Work-up Before Starting Psychotropic Medications

Before starting the patient on psychotropic medications, the following steps should be taken:

- Detailed history of existing and past medical diagnoses and associated symptomatology should be obtained.
- Family history of cardiac problems (e.g., CHD, cardiac arrhythmias, sudden death, e.g., before the age of 40), diagnosis of long QT syndrome should be obtained.
- An accurate note of all the medications the patient is currently taking, and previous medications tried (including side-effects) should be made from the patient, family, and general practitioner (GP).
- All the baseline blood investigations, including HbA1c, cholesterol, liver function tests, renal function tests, thyroid function tests, full blood count (FBC), should be obtained, for all patients. Additional investigations (CRP and troponin) should be ordered for specific medications such as Clozapine.
- Baseline electrocardiogram (ECG). Where is doubt, obtain advice from a physician.

CONCLUSION

Pharmacological treatment is the mainstream of the treatment of SMI. Effective pharmacological treatments are available, which reduce the burden of morbidity associated with the SMI. Effective pharmacological treatments also reduce the risk of mortality. All the SMI's by definition are chronic conditions which follow a remitting, relapsing course, necessitating long-term pharmacological treatments, which, in a large proportion of patients, may lifet ime conditions.

All the pharmacological treatments are associated with side-effects, which are potentially perilous, and can appear in unpredictable manner. These side-effects increase the risk of developing CVD. The cardio-vascular side-effects appear at different stages of pharmacological treatment. Some appear acutely and dramatically (e.g., myocarditis), while others are insidious in onset (components of metabolic syndrome, cardiomyopathy) and can be missed without due vigilance. It is important to keep in mind that some of the risk factors associated with the development of CVD are potentially modifiable.

In treatment of depression, while newer antidepressants with better side-effects profile than TCA's and MAOIs are available, TCA's and MAOIs undoubtedly have a place in the management of severe depressions which respond inadequately to newer antidepressants. The SGA's have superior neurological side-effects profile compared to FGAs, but they are more commonly associated with risk factors for CVD.

In order to make medically informed treatment decisions about pharmacological treatments, the psychiatrists must have, among other things, an understanding of cardiac physiology, awareness of factors which contribute to the risks and their interactions with one another, and skills in interpreting ECG. This would reduce the chances of psychiatrists either completely avoiding highly effective medications because of their generic concerns about potentially serious cardiac side-effects or taking an insouciant approach to treatment that would expose the patients to higher risks. High index of suspicion, regular monitoring, and ordering investigations in a timely manner would go a long way towards managing the risks effectively and improving the prognosis of these highly debilitating conditions.

REFERENCES


