Evaluation of Biomass Yield and Quality Parameters of Sesban (Sesbania sesban L.) Varieties in Irrigated Lowland of Dassench District of South Omo, South-Western, Ethiopia

Denbela Hidosa*
Livestock Research Directorate, Jinka Agricultural Research Center, Ethiopia

ABSTRACT

This study was conducted to quantify biomass yield and quality parameters of five Sesbania sesban varieties in irrigated lowland of Dassench district. The Sermemiret Kebele from Dassench district was selected for on-farm trial. The five Sesbania sesban varieties such as DZ-2002, DZ-0040, DZ-0079, DZ-0073 and DZ-32 were evaluated in a randomized complete block design with three replications per variety. The biomass yield, plant height, branches per plant and quality parameters were analyzed by using GLM procedure of SAS and Least Significant Difference (LSD) was used for mean separation. Result from present study showed that higher biomass yield (17.66 ton/ha) was obtained from DZ-32 variety, while the lower biomass yield (8.95 ton/ha) recorded from DZ-0073 variety. However, DZ-0079 variety had higher (p<0.05) crude protein (268.10 g/kg, DM), while DZ-32 variety had lower crude protein (186.70 g/kg, DM). Based result from this study, it was concluded that DZ-32 variety was best candidate to improve biomass supply for enhanced production from livestock.

KEYWORDS: Biomass yield; Crude protein; Dassench; Fiber and Irrigation

INTRODUCTION

In Ethiopia, the livestock production has been contributing substantially to the livelihoods of the rural households, but the overall productivity from the sector is very low due to poor livestock feed supply in quantity and quality [1,2]. Similarly, in the study area livestock husbandry system is extensively based on natural-pasture, which is greatly influenced by biomass supply and nutritional dynamics of pasture-forages [3-7]. The animal fed on poor-quality diets could not realize the dietary nutrient requirement. This is making livestock take too long to attain optimum production and reproduction performances [1,5,8-10]. Thus, the identifying the adaptability potential of improved fodder species and demonstrating newly adaptable fodder species to the pastoral and agro-pastoral production niches is only the strategies to beat the existing feed shortage problem [4,5,11]. Among the improved fodder species, Sesbania sesban is a legume fodder species, which grown up to 8m above cutting height and supplied high-quality protein for livestock [12]. The Sesbania species have grown best in amount of rainfall per annum which ranged from 500-2000mm with ambient temperature which averaged from 17 °C-20 °C in loose sandy to heavy clay soils [13,14]. The biomass yield of Sesbania species was reported up to 20 ton/ha under more favorable agro-ecologies, while the world reported average forage biomass yields are ranging from four to twelve tons from a hectare per year [15]. Sesban foliage (stems + leaves) had crude protein content above 22% and with moderate-to-low cell wall content [16]. The dry matter degradability (DMD %) of Sesbania species was reported up to 75%, while in live goats DMD measured from the 66-71% [17]. Moreover, it reported that cattle, sheep and goats fed to diets contained different inclusion levels of Sesbania leaves showed better nutrient metabolism as compared to control animals
[18-21]. In addition, reports of Wambui et al. [22] and Sampathi et al. [23] were affirmed that goats fed on leaves of *Sesbania* retained more nitrogen than goat not fed on leaves of *Sesbania*. Nevertheless, with this notable potential, different *Sesbania* varieties have not evaluated in study district under irrigated condition for biomass yield and quality parameters. Thus, present study was conducted to evaluate the biomass yield and quality parameters of *Sesbania* varieties.

MATERIALS AND METHODS

Experimental site: This study was conducted from July-December 2019 main cropping season in agro-pastoral area of the Dassench district in South Omo Zone South-western Ethiopia. The study site has laid at 50°14’N latitude, 36°44’E longitude and 200km from Jinka town (capital city of South Omo Zone). The area has annual temperature which a range from 25-40 °C and average rainfall varies from 350-600mm in bimodal type with erratic rainfall distribution (Figure 1). The altitude of the study area is in the range of 250-900 meters above sea level with silty alluvial soil type. The study district has comprised 1, 014, 403 cattle, 753, 568 sheep, 1, 013971 goats, 23, 412 Poultry and 17, 228 donkeys [1]; (Table 1).

![Figure 1: Map of study area.](image)

Table 1: Soil physio-chemical chemical composition of study area, in 2019.

<table>
<thead>
<tr>
<th>Soil Chemical Parameters</th>
<th>PH</th>
<th>Nitrogen (%)</th>
<th>Phosphorus (mg kg(^{-1}))</th>
<th>Potassium (mg kg(^{-1}))</th>
<th>Sulfur (mg/kg(^{-1}))</th>
<th>Boron (mg kg(^{-1}))</th>
<th>OC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.03</td>
<td>0.08</td>
<td>58.9</td>
<td>58.9</td>
<td>2.41</td>
<td>0.16</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Soil Physical Parameters

<table>
<thead>
<tr>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

Keynote: OC: Organic Carbon

Agro-Pastoral Research Extension Group (APREG) Formation

The Sermemiret Kebele from the Dassench district was selected for on-farm investigation. One APREG that included about 25 agro-pastoralists (80% males and 20% females) was established with assistance of district livestock office experts based on availability and accessibility of irrigation schemes, interest and irrigation experiences of agro-pastoralists.

Experimental Treatment and Design

The five *Sesban* varieties such as DZ-2002, DZ-0040, DZ-0079, DZ-0073 and DZ-32 were collected from Debre Zeit Agricultural Research Center and transported to the experimental site. A plot area of 4x3 (12m\(^2\)) containing 4 rows which each row 1m apart and plant spaced 1m within row. The spaces between plots were 1m and the total area of experiment was 12x26m (312m\(^2\)). The experimental design used in this study was randomized completed block design comprising three replications per variety and plots in each block were randomly assigned to each variety. The furrow-irrigation was used, and all the plots were irrigated uniformly as per the intended irrigation schedule.

Site Management and Data Collection

The experimental plots were kept nearly weed-free by hand hoeing, and the data like plant height and branches per plant were measured at age of 50 percent heading (16 weeks after planting) by taking eight plants from middle of two rows per plot. The cutting height above the ground was measured from ground to the tip of the main stem of plant. The leaf biomass yields at 16 weeks, all leaf and shoots were weighed from the three harvested middle row per plot immediately in the field by using spring weight balance and five-hundred-gram composite leaves samples per plot was air dried under shade and secured for the further biomass yield and quality parameter analysis. Then the 300g of samples from the air-dried sample was taken and allotted into oven dried which set at 105 °C Temperature for 24 hours according to procedures of James et al. [24].

Biomass Yield (ton/ha) = TFW \times (DWss/HA \times FWss) \times 10

Where TFW = total fresh weight kg/plot, DWss = dry weight of sub-sample in grams, FWss = fresh weight of sub-sample in grams, HA = Harvest plot area in square meters and 10 is a constant for conversion of yields in kg/m to t/ha. The branches per plant for each variety were calculated by counting all main branches on sampled trees and average of sampled branches were considered.

Evaluation of Quality Parameters

For the evaluation of quality parameters, samples per variety.
Research Article

Denbela Hidosa

Research Article

Results and Discussion

Agronomic Parameters and Biomass Yield

The agronomic parameters (cutting height above ground and branches per plant) and biomass yield of Sesbania varieties under irrigated lowland of Dassench district are illustrated in Table 2. The higher (p<0.05) biomass yield obtained from DZ-32 variety than DZ-2002, DZ-0040 and DZ-0073 varieties, but biomass yield of DZ-32 variety was comparable (p>0.05) to DZ-0079 variety. However, the biomass yield was not significantly (p>0.05) varied among DZ-2002, DZ-0040, DZ-0073 and DZ-0079 varieties. The plant height of tested Sesbania sesban varieties had not significantly (p>0.05) varied each other, but the DZ-0079 variety had taller plant height, while plant height for DZ-2002 variety was shorter. Likewise, the tested Sesbania sesban varieties shares similarly trend as plant height for the branches per plant, but more (p<0.05) branches per plant were recorded from the DZ-0079 variety, while fewer branch per plant was for DZ-32 variety. The result on leaf to stem ratio revealed that higher (p<0.05) leaf to stem ratio was observed for DZ-2002 variety than DZ-0073, but DZ-0073 variety had comparable leaf to stem ratio to DZ-0040, DZ-0073 and DZ-0079 varieties. The higher biomass yield for DZ-32 Sesbania variety from this study is due to higher varietal potential of variety. Similar to result from the present study, Megerssa & Feyisa [28] and Negashu et al. [12] were reported that different forage biomass production among the forage crops is due to variation in in genetic potential of forage crops. Likewise, also the report of Kebede et al. [29] discovered that the biomass yield variability among the forage species is due to varietal or biological potential of forage species. The variability in biomass yield is due to biological or genetic effects have been widely described for legumes species in general [30].

Table 2: Leaf biomass yield, plant height, branches per plant (BPP) and leaf to stem ratio (LTSR) of Sesbania varieties grown in irrigated lowland of Dassench district in 2019 planting year.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Biomass Yield (ton/ha)</th>
<th>Plant Height(m)</th>
<th>BPP</th>
<th>LTSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>DZ-2002</td>
<td>9.46*</td>
<td>2.99</td>
<td>54.33</td>
<td>1.27*</td>
</tr>
<tr>
<td>DZ-0040</td>
<td>9.34*</td>
<td>3.49</td>
<td>63.33</td>
<td>1.13*</td>
</tr>
<tr>
<td>DZ-0079</td>
<td>11.86*</td>
<td>3.48</td>
<td>64.67</td>
<td>1.07*</td>
</tr>
<tr>
<td>DZ-0073</td>
<td>8.95*</td>
<td>2.89</td>
<td>56.67</td>
<td>0.98*</td>
</tr>
<tr>
<td>DZ-32</td>
<td>17.66*</td>
<td>3.18</td>
<td>43.33</td>
<td>1.06*</td>
</tr>
<tr>
<td>SEM</td>
<td>3.43</td>
<td>0.99</td>
<td>20.23</td>
<td>0.14</td>
</tr>
<tr>
<td>LSD</td>
<td>6.19</td>
<td>1.81</td>
<td>36.807</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Keynote: Means with the similar letters in across column for biomass yields, plant height, BPP and LTSR at 50% flowering age are not significant at p>0.05; SEM: Standard Error of Mean; LSD: Least Significant Difference.

The biomass yield obtained from this study for Sesbania varieties were higher than reported biomass yield values which ranged from 4.64-7.91ton/ha by Wubshet et al. [31] for five Sesbania varieties from highland of Eastern Harerger of Ethiopia and (20ton/ha) reported from the Kenya [32]. However, the biomass yield from this study was lower than reported values of (18.91ton/ha) and (27.64ton/ha) for DZ-89 and DZ96 varieties, respectively by Negashu & Gizahun [12], but the biomass yield was comparable to biomass yield of DZ-80, DZ-104 and DZ-123 Sesbania varieties by same authors from Kelem Wollega, Ethiopia.

The cutting plant height above ground and branches per plant are a good description to identify the growth and adaptation performances of crops [31,33].Similar plant height growth potential was reported from highland of Eastern Harerger, by Wubshet et al. [31] for five Sesbania varieties. The plant height attained from this study is in agreement to previously reported values which ranged from 2.9- 3.3m by Asmelash et al. [33], but it was lower than value attained at 10 months of harvest (4m) reported by Megerssa & Feyisa [28] and (3.65-3.87m) by Wubshet et al. [31], 3.75-4.88m by Negashu & Gizahun [12] at 24 months.

The higher braches per plant from this study than value of (26) reported by Asmelash et al. [33] from South Omo for Sesbania variety, but braches per plant from this study was comparable to values of (40-52) reported by Denbela et al. [7] for six pigeon pea varieties that adapted the South Omo under rain fed condition.

Leaf to stem ratio is an important factor that influences forage quality, diet selection, intake and nutrient degradability [34,35]. The significant difference observed among the Sesbania sesban varieties for leaf to stem ratio from this study is also related to genetic variation among the varieties. The result on leaf to stem ratio from this study is higher than leaf to stem ratio values ranged from 0.23-0.313 reported by Wubshet et al. [31] from Highland of Eastern Harerger for five Sesbania sesban varieties, but lower than reported values of (0.98-1.27) by Denbela et al. [7] for six pigeon pea varieties which grown in rain fed condition from Ethiopia.

Quality Parameters

The quality parameters of Sesbania varieties grown in irrigated lowland of Dassench district are presented in Table 3. The Sesban DZ-0040 had higher (p<0.05) ash concentration than DZ-2002, DZ-
0079 and DZ-32 varieties, but its ash concentration was similar (p>0.05) to DZ-0073 variety. The DZ-0079 variety had higher (p<0.05) crude protein concentration than DZ-32, but the CP concentration was similar (p>0.05) to DZ-0073 variety. Regarding to fibers fractions, the DZ-0040 variety had higher (p<0.05) NDF concentration than DZ-0073 variety, but NDF concentration was similar (p>0.05) among the rest varieties. However, DZ-0073 variety had lower (p<0.05) ADF concentration than DZ-0079 and DZ-32 varieties, but ADF concentration was similar to DZ-2002 and DZ-0040 varieties.

Table 3: The quality parameters of Sesbania varieties grown in irrigated lowland of Dassench district in 2019 planting year.

<table>
<thead>
<tr>
<th>Variety</th>
<th>DM%</th>
<th>Ash (g/kg, DM)</th>
<th>CP (g/kg, DM)</th>
<th>NDF (g/kg, DM)</th>
<th>ADF (g/kg, DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DZ-2002</td>
<td>90</td>
<td>79.3a</td>
<td>204.9b</td>
<td>535.03c</td>
<td>402.49d</td>
</tr>
<tr>
<td>DZ-0040</td>
<td>89.67</td>
<td>116.9a</td>
<td>240.6a</td>
<td>557.23a</td>
<td>404.51a</td>
</tr>
<tr>
<td>DZ-0079</td>
<td>89.67</td>
<td>88.2a</td>
<td>268.1a</td>
<td>487.87a</td>
<td>415.75a</td>
</tr>
<tr>
<td>DZ-0073</td>
<td>89.33</td>
<td>101.1b</td>
<td>260.2b</td>
<td>438.87b</td>
<td>309.89b</td>
</tr>
<tr>
<td>DZ-32</td>
<td>91.33</td>
<td>88.5a</td>
<td>186.7a</td>
<td>520a</td>
<td>412.56a</td>
</tr>
<tr>
<td>SEM</td>
<td>1.43</td>
<td>14.9</td>
<td>0.79</td>
<td>5.52</td>
<td>5.29</td>
</tr>
<tr>
<td>LSD</td>
<td>2.61</td>
<td>27.1</td>
<td>14.54</td>
<td>100.41</td>
<td>96.38</td>
</tr>
</tbody>
</table>

Keynote: Means with similar letters (a, b, c, d) in across column for quality parameters are not significantly differed at p>0.05 at 50% flowering stage; DM%: Dry Matter Percent; CP: Crude Protein; NDF: Neutral Detergent Fiber; ADF: Acid Detergent Fiber; SEM: Standard Error of Mean; LSD: Least Significant Difference.

The higher crude protein concentration for the DZ-0079 variety is likely to be fast hereditary-potential to accumulate the high nitrogen contents from the soil. Similarly, the investigation was reported by Cheema et al. [36] which revealed that variation in crude protein concentration for fodder species was related to genotypic variation in accumulation of protein in the leaves during growth periods. The result on crude protein concentration obtained from present finding for all Sesbania varieties was higher than reported value of (154g/kg, DM) by Asmelash et al. [33], but crude protein concentration from this study was comparable to reported values of (228g/kg, DM) and (236.5g/kg, DM) by Debela et al. [37] and Uday et al. [10], respectively for DZ-0040 variety. In the study district, the crude protein from the rangeland especially from the sward’s is cannot provide adequate protein level to meet the requirement of the ruminant animal [38].

Therefore, the result from this study indicated that all Sesbania varieties had crude protein content above the minimum critical level of crude protein (80g/kg, DM) which required for normal function of rumen microorganisms [39,40]. This is suggested that there is possibility of using all varieties as protein supplements to low-quality diet in the agro-pastoral and pastoral areas by planting superior variety (candidate). The result on fiber fractions (NDF and ADF) from present study were higher than values stated by different scholars. Accordingly, values of NDF (238g/kg, DM) and ADF (202g/kg, DM) by Debela et al. [37], NDF (189g/kg, DM) and ADF (153.5g/kg, DM) by Asmelash et al. [33] and (368-373g/kg, DM) and (146.4-171.7g/ kg, DM) for NDF and ADF, respectively for six Sesbania varieties [31]. The higher fibers contents from this study than previously reported values might be due to varietal differences and environmental factors. The soluble carbohydrate contents in neutral detergent do not depend only on species, but also on their responses to the environmental factors [40,41].

CONCLUSION

The DZ-32 variety gave higher biomass yield, while DZ-0073 variety gave lower biomass yield. The DZ-0079 variety had higher crude protein, while DZ-32 had lower crude protein concentration. Based result from this study, it was concluded that DZ-32 variety as superior candidate to adapt in tested agro-ecologies than other varieties for supply of higher dry matter yield.

ACKNOWLEDGEMENT

The author extremely thankful the Regional Pastoral Livelihood Resilience Project (RPLRP) Coordination Office at Hawassa for fully fund for this research activity. The author was also grateful to acknowledge Dassench district Livestock and Fisheries Development Office, Kebele Developmental Agents and Agro-pastoralists for fully participation in this study and made result from this study to be fruitful.

CONFLICT OF INTERESTS

Author declared that there no conflict of interests for this article and I revised and approved this manuscript for publication.

REFERENCES

